Wednesday, September 17, 2008

Text Encryption & Decryption

Source sample :


// static fields


string plainText = string.Empty; // original plaintext

string passPhrase = "Passport"; // can be any string
string saltValue = "s@ltValue"; // can be any string
string hashAlgorithm = "MD5"; // can be "MD5" SHA1
int passwordIterations = 2; // can be any number
string initVector = "@1B2c3D4e5F6g7H8"; // must be 16 bytes
int keySize = 256; // can be 192 or 128

public static string cipherText = string.Empty;


// calling methods

cipherText = RijndaelSimple.Encrypt(plainText,
passPhrase,
saltValue,
hashAlgorithm,
passwordIterations,
initVector,
keySize);


plainText = RijndaelSimple.Decrypt(cipherText,
passPhrase,
saltValue,
hashAlgorithm,
passwordIterations,
initVector,
keySize);


//……………………………………………………………………………………………………………..

// the class



public class RijndaelSimple
{
///
/// Encrypts specified plaintext using Rijndael symmetric key algorithm
/// and returns a base64-encoded result.
///
///
/// Plaintext value to be encrypted.
///
///
/// Passphrase from which a pseudo-random password will be derived. The
/// derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that this
/// passphrase is an ASCII string.
///
///
/// Salt value used along with passphrase to generate password. Salt can
/// be any string. In this example we assume that salt is an ASCII string.
///
///
/// Hash algorithm used to generate password. Allowed values are: "MD5" and
/// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
///
///
/// Number of iterations used to generate password. One or two iterations
/// should be enough.
///
///
/// Initialization vector (or IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long.
///
///
/// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
/// Longer keys are more secure than shorter keys.
///
///
/// Encrypted value formatted as a base64-encoded string.
///
public static string Encrypt(string plainText,
string passPhrase,
string saltValue,
string hashAlgorithm,
int passwordIterations,
string initVector,
int keySize)
{
// Convert strings into byte arrays.
// Let us assume that strings only contain ASCII codes.
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
// encoding.
byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue);

// Convert our plaintext into a byte array.
// Let us assume that plaintext contains UTF8-encoded characters.
byte[] plainTextBytes = Encoding.UTF8.GetBytes(plainText);

// First, we must create a password, from which the key will be derived.
// This password will be generated from the specified passphrase and
// salt value. The password will be created using the specified hash
// algorithm. Password creation can be done in several iterations.
PasswordDeriveBytes password = new PasswordDeriveBytes(
passPhrase,
saltValueBytes,
hashAlgorithm,
passwordIterations);

// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead of bits).
byte[] keyBytes = password.GetBytes(keySize / 8);

// Create uninitialized Rijndael encryption object.
RijndaelManaged symmetricKey = new RijndaelManaged();

// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
symmetricKey.Mode = CipherMode.CBC;

// Generate encryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
ICryptoTransform encryptor = symmetricKey.CreateEncryptor(
keyBytes,
initVectorBytes);

// Define memory stream which will be used to hold encrypted data.
MemoryStream memoryStream = new MemoryStream();

// Define cryptographic stream (always use Write mode for encryption).
CryptoStream cryptoStream = new CryptoStream(memoryStream,
encryptor,
CryptoStreamMode.Write);
// Start encrypting.
cryptoStream.Write(plainTextBytes, 0, plainTextBytes.Length);

// Finish encrypting.
cryptoStream.FlushFinalBlock();

// Convert our encrypted data from a memory stream into a byte array.
byte[] cipherTextBytes = memoryStream.ToArray();

// Close both streams.
memoryStream.Close();
cryptoStream.Close();

// Convert encrypted data into a base64-encoded string.
string cipherText = Convert.ToBase64String(cipherTextBytes);

// Return encrypted string.
return cipherText;
}

///
/// Decrypts specified ciphertext using Rijndael symmetric key algorithm.
///
///
/// Base64-formatted ciphertext value.
///
///
/// Passphrase from which a pseudo-random password will be derived. The
/// derived password will be used to generate the encryption key.
/// Passphrase can be any string. In this example we assume that this
/// passphrase is an ASCII string.
///
///
/// Salt value used along with passphrase to generate password. Salt can
/// be any string. In this example we assume that salt is an ASCII string.
///
///
/// Hash algorithm used to generate password. Allowed values are: "MD5" and
/// "SHA1". SHA1 hashes are a bit slower, but more secure than MD5 hashes.
///
///
/// Number of iterations used to generate password. One or two iterations
/// should be enough.
///
///
/// Initialization vector (or IV). This value is required to encrypt the
/// first block of plaintext data. For RijndaelManaged class IV must be
/// exactly 16 ASCII characters long.
///
///
/// Size of encryption key in bits. Allowed values are: 128, 192, and 256.
/// Longer keys are more secure than shorter keys.
///
///
/// Decrypted string value.
///
///
/// Most of the logic in this function is similar to the Encrypt
/// logic. In order for decryption to work, all parameters of this function
/// - except cipherText value - must match the corresponding parameters of
/// the Encrypt function which was called to generate the
/// ciphertext.
///
public static string Decrypt(string cipherText,
string passPhrase,
string saltValue,
string hashAlgorithm,
int passwordIterations,
string initVector,
int keySize)
{
// Convert strings defining encryption key characteristics into byte
// arrays. Let us assume that strings only contain ASCII codes.
// If strings include Unicode characters, use Unicode, UTF7, or UTF8
// encoding.
byte[] initVectorBytes = Encoding.ASCII.GetBytes(initVector);
byte[] saltValueBytes = Encoding.ASCII.GetBytes(saltValue);

// Convert our ciphertext into a byte array.
byte[] cipherTextBytes = Convert.FromBase64String(cipherText);

// First, we must create a password, from which the key will be
// derived. This password will be generated from the specified
// passphrase and salt value. The password will be created using
// the specified hash algorithm. Password creation can be done in
// several iterations.
PasswordDeriveBytes password = new PasswordDeriveBytes(
passPhrase,
saltValueBytes,
hashAlgorithm,
passwordIterations);

// Use the password to generate pseudo-random bytes for the encryption
// key. Specify the size of the key in bytes (instead of bits).
byte[] keyBytes = password.GetBytes(keySize / 8);

// Create uninitialized Rijndael encryption object.
RijndaelManaged symmetricKey = new RijndaelManaged();

// It is reasonable to set encryption mode to Cipher Block Chaining
// (CBC). Use default options for other symmetric key parameters.
symmetricKey.Mode = CipherMode.CBC;

// Generate decryptor from the existing key bytes and initialization
// vector. Key size will be defined based on the number of the key
// bytes.
ICryptoTransform decryptor = symmetricKey.CreateDecryptor(
keyBytes,
initVectorBytes);

// Define memory stream which will be used to hold encrypted data.
MemoryStream memoryStream = new MemoryStream(cipherTextBytes);

// Define cryptographic stream (always use Read mode for encryption).
CryptoStream cryptoStream = new CryptoStream(memoryStream,
decryptor,
CryptoStreamMode.Read);

// Since at this point we don't know what the size of decrypted data
// will be, allocate the buffer long enough to hold ciphertext;
// plaintext is never longer than ciphertext.
byte[] plainTextBytes = new byte[cipherTextBytes.Length];

// Start decrypting.
int decryptedByteCount = cryptoStream.Read(plainTextBytes,
0,
plainTextBytes.Length);

// Close both streams.
memoryStream.Close();
cryptoStream.Close();

// Convert decrypted data into a string.
// Let us assume that the original plaintext string was UTF8-encoded.
string plainText = Encoding.UTF8.GetString(plainTextBytes,
0,
decryptedByteCount);

// Return decrypted string.
return plainText;
}
}

No comments:

Post a Comment